
OpenStep Journal, Spring 1995 (Volume 1, Issue 1).
Copyright ã1995 by NeXT Computer, Inc. All Rights Reserved.

The Same, Yet Different:
NEXTSTEP and OpenStep
Written by        Jean Ostrem

Release 4.0 will be the first fully OpenStepä-compliant release of
NEXTSTEPä. Because of some important differences between OpenStep
and previous versions
of NEXTSTEP, existing applications will have to be upgraded before they
will run under Release 4.0. Conversion tools provided with the release
will make this upgrading easier. By understanding the changes that
OpenStep will bring, developers can modify their current application
designs and programming projects to make conversion
easier later.

OPENSTEP TO THE RESCUE
OpenStep, as you probably know by now, is an application programming interface
(API) based on NeXTäComputer's open object layer. Using OpenStep simplifies
and speeds the process of constructing complex and portable client/server
software that can run on multiple platforms by providing a framework for
distributed computing.

This article frequently uses the term OpenStep to mean both NEXTSTEP 4.0 and any OpenStep
implementation.

In other words, it helps you develop real corporatewide applications faster than
you ever could before. It may not make developing applications a piece of cake,
but it should allow you to focus more on creating the unique pieces of your
application and less on reinventing common mechanisms over and over again.
NEXTSTEP Release 4.0 will be the first OpenStep-compliant release of NEXTSTEP.
Although applications will look to users much the same as they did in previous
releases, Release 4.0 applications will have some important differences. This
means that to realize all of the benefits of OpenStep that come with Release 4.0,
you'll first have to upgrade existing applications. Conversion tools will be
provided with Release 4.0, and they'll simplify the process of moving applications
to OpenStep. In the meantime, you can take steps now in your current coding
projects to reduce conversion effort later.
The first step is to understand what changes OpenStep brings and why these
changes were made.

DESIGN GOALS FOR OPENSTEP
The OpenStep specification replaces the NEXTSTEP Release 3 Application Kitä,
the Common classes and functions, and the DPS client library. OpenStep has
many improvements over NEXTSTEP Release 3 that are based on these design
goals:
· Portability OpenStep contains many new classes that provide a layer of operating
system and hardware independence. These new classes provide access to
operating system services such as threads, timers, interprocess and network

communication, and the current date and time. Another new class, NSString,
insulates your code from the different character encodings used in different
environments. All of the classes that provide operating system independence are

defined in the Foundation Kitä.
· Improved support for Distributed Objects OpenStep includes the classes that distribute
objects across processes and across machines. Using Distributed Objects
improves portability because it allows you to share information between
processes without using operating system calls. OpenStep also provides a
protocol that allows you to use the same method to encode objects for

distribution that you use to encode objects for archiving.
To allow you to distribute data more easily, many of the structures provided in

NEXTSTEP Release 3 are now objects. For example, events, exceptions,
colors, screens, and DPSContexts are now objects. Turning these structures into
objects has other advantages: It allows you to use Objective C message syntax
to archive, allocate, deallocate, and access this data. It also provides better
encapsulation and future extensibility.
· Allow creation of internationalized applications The Foundation Kit provides a new object

called NSString. NSString allows you to perform character manipulation on
strings without requiring that you know which character encoding is being
used. Using NSStrings, you can write truly internationalized code, code that
will work with any writing system supported by the Unicode standard. The
Text object and many other Application Kit objects have been modified to use
NSString objects in place of C strings. OpenStep also supports complete
localization of an application's user interface, the messages displayed to the
user, and the presentation of    dates

and times.

· Improved memory management To protect you from accessing freed objects and from
never

freeing your objects, OpenStep introduces a new scheme for automatically
deallocating objects when they are no longer needed. This scheme uses
reference counting to ensure that an object

is not deallocated while it is still being used. When you create an object, you
can mark it for later release. The object is then added to a pool of objects whose
reference counts are decremented at the top of the event loop. When an
object's reference count reaches 0, the

object is deallocated.
In this new scheme, an object is always deallocated by the object that created

it, meaning that you don't have to worry about deallocating an object that
you receive from an Application Kit object. Because the Distributed Objects
system is now part of OpenStep, it uses this new memory management scheme
and follows this same rule. Thus, the OpenStep API works the same remotely
as it does locally.
· Cleaner, simpler API Even in classes that have no conceptual changes, some
improvements have been made to the API. To begin with, arguments and return
values are statically typed to

allow better compile-time type checking. Also methods that used to return self
by convention now return void. All classes, functions, types, and constants have
the prefix NS to better distinguish them from your classes and functions.
Method names have been expanded so that they are more easily understood.

In addition to these API changes, which apply to virtually all classes, some of
the classes

with more complex APIs have been simplified. One example of this is PopUpList.

PopUpList defines pop-up and pull-down lists. These lists are activated by a
trigger button, and the

individual items in the list are stored in a Matrix. When you create what looks
like a pop-up list in Interface Builder, you are really creating the trigger
button. To access the PopUpList, you must send target to the trigger button
that you created in Interface Builder, and to access the individual items in the
list, you must first retrieve the Matrix from the PopUpList with the itemList
method, then access the items through the Matrix.

In OpenStep, this has all been simplified. A single object, NSPopUpButton,
encapsulates the PopUpList, the Button, and the Matrix. The object created by
Interface Builder is the

NSPopUpButton, so you don't need to bother retrieving the trigger button's
target anymore.

You can retrieve items in the list by sending messages directly to
NSPopUpButton.
These changes are significant enough that you will need to convert existing
applications
before you can run them under OpenStep. NeXT will provide conversion tools to
make converting applications easier; the conversion process is described later in
this article.

IMPORTANT OPENSTEP DIFFERENCES
Many of the differences between OpenStep and NEXTSTEP Release 3 are fairly
straightforward: A method or class in Release 3 is replaced by a new method or
class, one to one. Other changes are more complex. Some entire sections of

functionality have changed. You will need to understand these changes if you
intend to update your applications for OpenStep.
In particular, there are these major areas of difference:

· Strings
· Changes to the DPS client library
· Updating the display of Views and Windows
· New objects: NSException, NSColor, NSEvent, NSScreen, and NSUserDefaults
· Notifications and delegates
· API conventions
· Archiving
The changes to allocation and deallocation and to strings are part of Foundation
Kit, which was first introduced as part of the Enterprise ObjectsäFramework. You
can find out more about them in the Foundation Kit documentation, as well as in
ªSneak Preview: The New Foundation Kitº (NXApp Summer 1994, pp. 3±28).
The following sections describe the other important differences between
OpenStep and previous versions of NEXTSTEP.

Changes to the DPS Client Library
In OpenStep, extensions to the DPS client library use objects wherever possible.
You now use objects to create and manage DPS contexts, to manage the
application event loop, and to create and manage timed entries.

The new NSDPSContext class defines DPS context objects. This class provides
methods that perform any operation you typically perform on a context. If you
are more familiar with the C function interface, you can use the method
DPSContext to retrieve the object's DPSContext record. You can then operate on
this context record using any of the functions or single operator functions defined
in the DPS client library. The object and the record are always synchronized with
each other; if you change one, the other is updated as well.
To manage the application event loop, you now use an NSRunLoop object instead
of DPS functions. The NSRunLoop class defines objects that manage input
sources. You generally don't need to create the run loop explicitly; one is created
for each thread of your application.
Timed entries in OpenStep are handled with NSTimer objects. The NSTimer class
defines timer objects that work with NSRunLoop objects. When you convert your
application, calls to the DPSAddTimedEntry() and DPSRemoveTimedEntry()
functions will change as shown in the following example.
Old code
void myHandler(DPSTimedEntry teNumber, double now, void *who)
{

[(id)who tick];
}
...
- setRefreshSpeed:(double)theSpeed
{

refreshSpeed = theSpeed;
if (mvFlags.running) {

DPSRemoveTimedEntry(timedEntry);
timedEntry = DPSAddTimedEntry(refreshSpeed, myHandler,
self, NX_RUNMODALTHRESHOLD);

}
return self;

}
...
- tick
{

...
}

New code
- setRefreshSpeed:(double)theSpeed
{

refreshSpeed = theSpeed;
if (mvFlags.running) {

[timedEntry invalidate]; [timedEntry release];
timedEntry = [[NSTimer scheduledTimerWithTimeInterval:

(NSTimeInterval)refreshSpeed
target:self selector:@selector(tick:)
userInfo:nil repeats:YES] retain];

}
return self;

}
...
- (void)tick:(NSTimer *)theTimer
{

...
}

The scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:
method creates a timer object that repeatedly schedules itself to fire after
refreshSpeed seconds. It also registers the timer with the currently active
NSRunLoop in the default mode. When the NSTimer created in this example fires,
it sends the message tick: with itself as an argument to the object that

created the NSTimer. The userInfo argument is a place to specify any other
information that
the method might need. The myHandler() function is no longer needed because
it existed
only to invoke the tick method.

Automatically Updating the Display
The Application Kit as it is today has a number of mechanisms to update the
display of Views and Windows, and many different classes provide various
degrees of control over them. OpenStep condenses all of these mechanisms into
a single mechanism that is much easier to use; there is only one way to have the
display automatically updated, and there is only one way to turn it off.
In OpenStep, when you make a change that affects a view's appearance, the
following sequence of events occurs:
1 The view sets its needsDisplay flag.
2 After the current user event has completed, the window receives an update
message.
3 update checks all of the views in the window's view hierarchy. If a view's
needsDisplay flag is set, it is redrawn.
You can disable this automatic updating of the display with NSWindow's
setAutodisplay: method. When this mechanism is disabled, the window still
receives the update message after each event, but it does not redraw the views.
If autodisplay is disabled, you can still use the NSView's display method to
redraw the view. You can also use the display method any time you want to

redraw the view immediately without waiting for the event to complete.
The following table lists the Application, View, and Window methods that are
obsolete because of this change. It also shows what OpenStep method replaces
that method.
Obsolete method OpenStep replacement
autoupdate (in Application) isAutodisplay (in NSWindow)
setAutoupdate: (in Application) setAutodisplay: (in NSWindow)
disableDisplay (in Window) None
enableDisplay (in Window) None
isDisplayEnabled (in Window) None
invalidate:: (in View) setNeedsDisplay:YES
isAutodisplay (in View) None
setAutodisplay: (in View) None (use display directly)
setsDisplayOnScroll: (in ClipView) None
update (in View) displayIfNeeded

OpenStep also simplifies the automatic enabling or disabling of menu cells.
Currently when you want a menu cell to be updated automatically, you
implement a method that determines if the menu cell should be enabled or
disabled, and you send the name of that method to the MenuCell in a
setUpdateAction:forMenu: message.
In OpenStep, all menu cells are automatically updated by default. The scheme for
enabling and disabling menus is simplified. For each cell in the menu, the
NSMenu object looks for an object in the responder chain that responds to the
cell's action message. If it finds an object that responds to the message, the cell
is enabled. If not, the cell is disabled. This scheme is sufficient for most menu
cells.

In a few instances, you may still need to control whether a cell is enabled or
disabled yourself.
For example, suppose you have an object that implements a copy method, but it
should be used only to copy TIFF images. If your object is the first responder, the
Copy command should be enabled only if a TIFF image is selected. In this case,
your object should implement the method validateCell: to test whether the
selection is a TIFF image and to enable or disable the Copy command accordingly.
Before NSMenu enables the cell, it looks to see if the object that implements the
action method also implements validateCell:. If so, it invokes that method to
determine if it should enable the cell. validateCell: is defined in the
NSMenuActionResponder informal protocol.

Notifications and Delegates
The Foundation Kit introduces a notification system, which is a way for objects
that don't    know about each other to communicate. Every application that uses
OpenStep has a notification
center (an instance of the class NSNotificationCenter). One object tells the
notification center that a particular event has occurred, and the notification
center broadcasts that event to all interested objects.
The notification system is similar to using delegates, but it has these notable
differences:
· Any number of objects may receive the notification, not just the delegate
object.
· An object may receive any message you like from the notification center, not
just the predefined delegate methods.

· The object posting the notification does not even have to know the other object
exists.
· Because there may be many objects receiving the same notification, none of
the receiving objects can pass a value back to the object that posted the
notification.
In OpenStep, some Application Kit objects that previously used delegates use the
notification system to inform delegates that an event occurred. If the Application
Kit object must receive a value back from the delegate, it still sends a message
directly to the delegate.
Objects with delegates are not the only objects that post notifications. Any object
can post a notification. The rest of this section explains how you can use the
notification system in your application and how the use of the notification system
will affect your existing delegate methods.

Using the notification system

If you want an object to receive a notification about a particular event, you
register that
object with the notification center. To register the object, have it send this
message to an NSNotificationCenter (typically, the application's default
notification center):
± (void)addObserver:(id)recipient selector:(SEL)message
                                name:(NSString *)notification object:(id)anObject
Once you send this message, whenever the center receives a notification
notification from object anObject, it sends recipient the message message. You
can specify nil for anObject, which means that any time the notification center

receives notification (from any object), it should notify recipient.
In the example below, the sending object will receive the windowMoved:
message whenever the object importantWindow posts
NSWindowDidMoveNotification to the application's default notification center.
[[NSNotificationCenter defaultCenter]

addObserver:self
selector:@selector(windowMoved:)
name:NSWindowDidMoveNotification
object:importantWindow];

The message that the notification center sends to your object (windowMoved:
in this example) must take an NSNotification object as an argument. An
NSNotification object is the only type
of object you can post to a notification center. The NSNotification object contains
a name (which objects use to identify the notification when they post it and when
they register to receive it),
the object that posted it, and sometimes extra information stored in a userInfo
dictionary. Your method can use the [notification object] message to find out
which object posted the notification and can retrieve other necessary information
using [notification userInfo] to access the
userInfo dictionary.

Changes to delegates

Although Application Kit objects that send messages to delegates will do so by
posting notifications to the notification center, you won't have to perform any
extra steps to have your delegate work the same way it always did. Delegates
are registered to receive notifications automatically. Inside the delegate method
itself, there are some minor changes. This section describes those changes.

A delegate method now receives an NSNotification object as an argument where
it used to receive the object that sent the message (that is the object for which it
is a delegate). To retrieve the object that used to be the sender of your delegate
method, use the NSNotification method object, as shown in the following
example.
Old code
- windowDidUpdate:sender
{

if ([sender isMainWindow])
[view updateLinksPanel];

return self;
}

New code
- windowDidUpdate:(NSNotification *)notification
{

NSWindow *theWindow = [notification object];
/* the "sender" */

if ([theWindow isMainWindow])
[view updateLinksPanel];

return self;
}

Matrix and TextField delegates

Previously, Matrix and TextField objects sometimes had a text delegate that
responded to
the actions that the field editor took. (The field editor is the NSText object used to
draw and edit text in a matrix or text field.) These two objects now have their

own delegates. Any field editor delegates defined in your application are
converted to NSMatrix or NSTextField delegates. Instead of responding to NSText
delegate methods, these new delegates implement the
methods shown in the following table.
Old delegate method Replacement
textDidChange: controlTextDidBeginEditing:
textDidEnd:endChar: controlTextDidEndEditing:
textDidGetKeys:isEmpty: controlTextDidChange:
Previously, the field editor delegate received a Text object as an argument to its
delegate methods, and it was very hard to find out which control sent the
message. Now, the field editor delegate receives an NSNotification object. The
sending NSMatrix or NSTextField object can be retrieved with the message
[notification object]. You can retrieve the NSText object from the
NSNotification's userInfo dictionary. The following example shows how to retrieve
the NSText object from the NSNotification.
Old code
± textDidChange:sender
{

Text *fieldEditor = sender;
...

}

New code
± controlTextDidBeginEditing:(NSNotification *)notification
{

NSText *fieldEditor = [[notification userInfo]
objectForKey:@"NSFieldEditor"];
...

}

New Objects
Many of the structures that you're used to dealing with are objects in OpenStep.
For example, exceptions, colors, events, screens, and user defaults all now use
objects rather than structures. As we mentioned earlier, using objects for these
items allows you to distribute the information they contain, to archive that
information, and to use a unified way of allocating and deallocating storage.

Exceptions

OpenStep uses NSException objects during exception handling. The NSException
object describes the exceptional condition. You write exception handlers in a
similar fashion as you you do now, but you raise an exception differently.
The NSException class introduces these changes to the way you now define an
exception:
· NSException uses names rather than numbers to identify exceptions.
· You always associate an error message with an NSException.
· You provide any necessary application-specific data through an NSDictionary,
which is a new Foundation Kit class that stores key-value pairs.
· You use the variable localException where you used to use NXLocalHandler.
To create an NSException object, send the
exceptionWithName:reason:userInfo: message to the NSException class
object. The first argument to this method is an NSString containing the name of
the exception. The second argument is an NSString containing an error message

that states the reason why the exception occurred. The third argument takes an
NSDictionary object in which you supply any necessary information to the
exception. The following example shows how you would convert an NX_RAISE()
macro call to code that creates an NSException.
Old code
int returnValue;
...
returnValue = aFunction();
if (returnValue)
 NX_RAISE(AFUNCTON_ERROR, &returnValue, NULL);

New code
int returnValue;
...
returnValue = aFunction();
if (returnValue) {

 NSException *theException = [[NSException
 exceptionWithName:@"aFunctionException"
 reason:@"Error during aFunction"
 userInfo:[NSDictionary dictionaryWithObjectsAndKeys:

[NSNumber numberWithInt:returnValue], @"Return Value", nil]
raise];

}

Colors

In OpenStep, colors are represented by NSColor objects rather than NXColor
structures. NSColor objects are constant objects that can't be changed; when you
modify a color, you create a new NSColor object out of an existing one.
Application Kit objects now use NSColor objects to define their color values. In
addition, Application Kit objects no longer take a separate gray value and color

value. Currently, you have to specify a color for an object and a separate gray
value to be used only on 2-bit grayscale screens. Now, you set only the color of
the object.
All NSColor objects have an alpha components, but you can use the
setIgnoresAlpha: method to enable or disable the use of the alpha
components.

Events

NSEvent objects represent an event from the application event queue. You can
retrieve the same information from an NSEvent object that you can now retrieve
from an NXEvent structure. NSEvents are constant objects, so the information in
an NSEvent object won't change out from under you.

Screens

In OpenStep, screens are represented by NSScreen objects rather than NXScreen
structures, and screens are no longer identified by screen numbers. This affects
the Window object methods that place windows on specific screens. Instead of
specifying an NXScreen structure for these methods, you use the NSScreen
method frame to retrieve the screen's size and location, then place the window
inside that frame.

User defaults

The OpenStep Foundation Kit provides a new user defaults system managed by
an object of class NSUserDefaults. In this new system, defaults are stored in
separate domains. Within each domain, the defaults are stored in
NSMutableDictionary objects. Basically, you perform two functions with
NSUserDefaults, modifying the defaults and retrieving the defaults:

· To add a default or to change a default already in the system, you use a method
such as setObject:forKey:. NSUserDefaults provides several methods to add
or change a value. You choose a method based on the type of value you want
to store (array, integer, and so on). Saving the default values is automatic.
· To retrieve the value for a default, use a method such as objectForKey:. Again,

NSUserDefaults provides several methods to perform this function, and you
choose which

one to use based on the type of value you want to retrieve.
When you request a default value, the NSUserDefaults object searches the
domains in its search list in the order defined by the search list. When it finds the
first occurrence, it stops the search. You can add to, remove from, or rearrange
the order of the domains in the search list. The default search list is:
1 The argument domain, which contains defaults parsed from the application's
command-line arguments
2 The application's domain
3 The domains for each of the user's preferred languages
4 The global domain, which contains defaults seen by all applications
5 The registration domain, which contains temporary defaults whose values can
be set by the application to ensure that searches will always be successful

New API Conventions
OpenStep follows these new API conventions:

· All instance variables are private.
· Methods don't return self without a good reason.
· Method arguments and most method return values are statically typed.

All instance variables are private

Allowing direct access to instance variables violates encapsulation, so all instance
variables are private in OpenStep. Hiding instance variables not only protects
them better, but it makes it easier for objects to change without breaking
subclasses.
Because all instance variables are private, if you subclass an Application Kit class,
you must now use accessor methods to access the superclass's instance
variables. Methods have been added to query and set all instance variables
where they did not previously exist.
Old code
originalWidth = bounds.size.width;

New code
originalWidth = [self bounds].size.width;

Methods return void by default

Currently, methods return self by convention. Some methods return self to
indicate success and nil to indicate failure. Returning self to indicate a Boolean
value or returning self without any associated meaning made the API more
confusing. In OpenStep, when a method has no real value to return, its return

type is void. Where a method returns self or nil, its OpenStep counterpart
returns BOOL.

Arguments are statically typed

To make the API more descriptive and explicit, all method arguments are now
statically typed. Static typing provides better compile-time type checking, plus it
makes it easier for you to learn how to use a method.
Old code
± (int)browser:sender numberOfRowsInColumn:(int)column ...

New code
± (int)browser:(NSBrowser *)sender numberOfRowsInColumn:(int)column ...

New Archiving Scheme
The new root object, NSObject, introduces major changes to the archiving
scheme. First, archives are written to NSData objects instead of to
NXTypedStreams. NSData defines objects that are generic data buffers. A related
class, NSMutableData, contains data that you can modify.
Second, there are two new objects in the Foundation Kit, NSArchiver and
NSUnarchiver, that archive your application's objects and remove your objects
from the archive, respectively. Both NSArchiver and NSUnarchiver are subclasses
of the same abstract superclass, NSCoder.
NSCoders are objects that know how to represent an object in a different format:
a format for archiving to a file, a format for shipping an object to another process,
or any other format you might identify. In OpenStep, both the archiving system

and the Distributed Objects system use NSCoders, so you no longer have to write
two sets of methods if you want to both archive and distribute copies of your
object. However, writing one set of methods to do both operations also means
that you need to pay attention to a few more details in the single set of methods
you do write. This is described more later in this section.

Archiving and unarchiving objects

When you archive a set of objects in OpenStep, the following sequence of events
occurs:
1 You create an instance of the NSArchiver class.
2 You send either encodeRootObject: or archiveRootObject:toFile: to the
NSArchiver.
3 The NSArchiver sends the root object an encodeWithCoder:self message.
4 Each object in the object graph is eventually sent an encodeWithCoder:
message.
encodeWithCoder: replaces the write: method. In the body of each
encodeWithCoder: method, the NSArchiver is called on to archive that object's
instance variables. It does so by writing them to an NSMutableData object.
When you unarchive a set of objects, a similar sequence of events occurs:
1 You create an instance of the NSUnarchiver class, usually configuring it with the
NSData object to which you wrote the archive.
2 You send either unarchiveObjectWithFile: or decodeObject to the

NSUnarchiver.
3 The NSUnarchiver sends the first object in the archive the message
initWithCoder:self.
4 Each object in the graph is eventually sent the initWithCoder: message. (This
method replaces the read: method.)

Converting the read: and write: methods

In OpenStep, read: and write: are replaced by initWithCoder: and
encodeWithCoder:. The method initWithCoder: reads values from an
NSUnarchiver object and assigns them to the object's instance variables.
Conversely, encodeWithCoder: writes the object's instance variables to an
NSArchiver object. These methods are defined in the NSCoding protocol.
If you have an object that you want to archive, it must conform to the NSCoding
protocol. In initWithCoder: and encodeWithCoder:, you must follow many of
the same rules you followed in the read: and write: methods. In particular, you
must call parallel methods in initWithCoder: and encodeWithCoder:, just like
you must call parallel functions in read: and write:, and you must retrieve data
from the archive in the same order in which you placed it in the archive.
For example, if your encodeWithCoder: method looks like the one shown below,
your initWithCoder: method must look like the one shown below as well.
- (void)encodeWithCoder:(NSCoder *)aCoder
{

[super encodeWithCoder:aCoder];
[aCoder encodeObject:authorID];
[aCoder encodeValuesOfObjCTypes:"@", &phone];
[aCoder encodeValuesOfObjCTypes:"i", &contract];

}

- initWithCoder:(NSCoder *)aDecoder
{

[super initWithCoder:aDecoder];
authorID = [[aDecoder decodeObject] retain];
[aDecoder decodeValuesOfObjCTypes:"@", &phone];
[aDecoder decodeValuesOfObjCTypes:"i", &contract];
return self;

}

This example shows encodeObject: as the basic method you use to archive an
object.
However, if you want to encode an object for both archiving and distribution, you
instead use encodeBycopyObject:. When the object is distributed, it is
distributed as a proxy. (Proxies inherit from the NSProxy class instead of
NSObject.) encodeBycopyObject: encodes the object in such a way that when
it is decoded, a copy of the object is returned rather than the proxy.
In NSArchiver, encodeBycopyObject: simply calls encodeObject: and returns.
This way, if encodeWithCoder: is passed an NSArchiver as the code, it archives
the object in the usual way.

CONVERTING TO OPENSTEP
Because of all of the differences described above, you must convert any Release
3 application before you can run it on NEXTSTEP 4.0 or another OpenStep-
compliant system. Fortunately, since NEXTSTEP 4.0 conforms to the OpenStep
specification, converting your code to NEXTSTEP 4.0 is a good way to turn your
application into an OpenStep application. There are a few operations outside of

the specification's scope that your application may have to perform, such as
accessing ports. However, converting will make your code as portable as
possible.
As mentioned earlier, NeXT will provide tools that make converting applications
easier. In a few places, the conversion tools may change your code to use
constructs defined in NEXTSTEP 4.0 but not in OpenStep. These places will be
clearly documented in the conversion guide that accompanies Release 4.0.
For now, we can give you a quick preview of the conversion process. You run it in
six main stages, with an optional seventh stage at the end:
· Stage 1 performs the most basic level of the conversion on your code. It
converts the names

of Application Kit objects and many methods. It also converts the root object: All
of your objects now inherit from the new root object, NSObject. It updates the
object allocation and deallocation mechanisms, all of the List, C string, and
NXRect arguments used in the

Application Kit, and the exception handling mechanism.
· Stage 2 converts streams, text, and images. Streams are no longer used in the
OpenStep API, so during stage 2, all uses of streams in your code are
converted to various OpenStep objects, usually NSData objects. The most
notable use of streams is in archiving, so the new archiving scheme is
introduced in this stage.
· Stage 3 converts code that accesses the Window Server. As you would expect,
there have been many changes to this portion of NEXTSTEP to make it
operating system±independent. Classes from the Foundation Kit operating
system±independence layer, NSEvent, NSTimer, and NSRunLoop, are

introduced at this stage. Another new class, NSDPSContext, defines objects
representing the PostScript execution context. Also, colors and fonts are

converted to their new implementations at this stage.
· Stage 4 converts the parts of your application that display on the
screenÐnamely, views and windowsÐand printing. The API for views and
windows has been simplified in many areas, making many of the existing View
and Window methods obsolete. Most of the changes in this area involve
removing View and Window methods that are no longer necessary. In printing,

many of the duties of the shared PrintInfo object have been off-loaded to a new
Application Kit object, NSPrintOperation. The changes to printing will be mostly
transparent to you unless you create and control your own printing processes.   
· Stage 5 converts several other parts of your application. First, it converts
delegate objects, because some Application Kit objects with delegates use
OpenStep's new notification system, described earlier. It also converts the
Application objectÐmany of the duties of the Application object have been
off-loaded to other, more appropriate, objects in the Application Kit. As a

result, you need to send messages to NXApp less.
· Moreover, this stage updates Workspace requests. The NSWorkspace class
replaces the NSWorkspaceRequestProtocol protocol. In addition, applications
now store and access their user defaults through the NSUserDefaults object
instead of Application Kit functions. And finally, this stages converts Controls and
Cells: These objects have not changed much, but there have been a few
significant improvements of which you may want to take advantage.
· Stage 6 performs an API cleanup. All OpenStep API follow certain conventions
that the NEXTSTEP kits did not necessarily follow. Use of these conventions
requires some changes to be made to your code. In addition, it makes

changes to modal panels. The use of Application Kit modal panels (such as
the Open and Save panels) is slightly different. Modal panels are handed out
differently, and modal panels that use file names have been simplified so that
they always use the absolute path.
After you've performed the six required conversion stages, you can run an
optional conversion stage. The optional conversions change occurrences of the
Common classes in your code. The Common classes are obsolete in OpenStep,
replaced by classes in the Foundation Kit. The required conversions change all of
the places where the Application Kit gave you an instance of a Common class.
The optional conversions change places where you create an instance of a
Common class yourself. These conversions are optional because the Common
classes are still supported in this release of NEXTSTEP. However, if you want to
make your code as portable as possible, you should run them.

PREPARING FOR OPENSTEP IN YOUR CURRENT WORK
While the conversion tools will simplify the process of moving applications to
OpenStep, you might want to take steps now to save effort later. In the
applications you're currently writing,
you can begin to adopt some of the OpenStep ideas. This will make it easier to
use the conversion tools in the future.
· Use Foundation Kit classes. Because OpenStep is based on Foundation Kit, using
Foundation Kit classes now is certainly good preparation for future work.
Additionally, the Foundation Kit classes and memory management facilities
are much nicer than what we've had before in

their place.

The most important Foundation Kit objects to start using early are NSArray,
NSDictionary, and NSString. The old classes List, HashTable, and Storage will
soon be obsolete, so you can save yourself trouble later by using NSArray and
NSDictionary in their place. And using NSString now will ease the process of
melding your app to the OpenStep Application Kit, which uses NSString in all
its APIs in place of (char *).    Using NSString now will also allow your code to

be fully international in Release 4.0.
· Use Distributed Objects. Listener and Speaker are not part of OpenStep, because
Distributed Objects (DO) provides a much more powerful mechanism and is
operating system±independent.    Converting uses of DO to OpenStep will be
much easier than converting uses of Listener/ Speaker. There is no reason
not to use DO now.
· Use ANSI routines. ANSI C library routines will be provided with any version of
OpenStep, whereas UNIXâ-specific routines may not be available on all
platforms supporting OpenStep.
· Avoid direct access to instance variables. For better encapsulation and extensibility,
instance variables in OpenStep aren't part of the API. Using methods to access
the information from subclasses' code now eliminates later conversion work.
· Don't rely on returning self. As mentioned earlier, methods in OpenStep return void
instead

of self by default. Avoid writing code that nests a set of message expressions
and relies on the current convention of returning self.
· Use displayIfNeeded. For updating a subset of controls in a window, the
displayIfNeeded mechanism is a close approximation to the display updating
mechanism OpenStep will use.   

(In contrast, the most dissimilar strategyÐand therefore the one that will be
most difficult to convertÐis one in which each view that is updated is sent an
explicit display message.)
· Use NX functions. Your code will be more portable if you use Application Kit objects
and

NX functions wherever possible instead of directly calling the PostScript
operators that NeXT added to Display PostScript.    For example, use the
Cursor object instead of the setcursor PostScript operator.   

Two exceptions are the alpha and compositing operatorsÐthey're included in
OpenStep.
· Avoid NXJournaler and SelectionCell. These classes aren't in OpenStep. Journaling is
too

window-system dependent to be included in OpenStep, while SelectionCell was
a trivial cell class provided in Release 1.0, and replaced in Release 2.0 by the
complete NXBrowser class.

DON'T WAIT, ACT NOW!
With NEXTSTEP Release 4.0 you'll receive the tools and documentation you'll
need to upgrade applications and take full advantage of new capabilities. But
that doesn't mean you should wait until then to prepare. Start using Foundation
Kit now, and be sure to avoid the soon-to-be-history methods and classes listed in
this article. You'll be well on your way to having portable applications that you
can run on NeXT's and other vendors' OpenStep implementations.

Jean Ostrem is a member of NeXT's Developer Publications group. You can reach her via e-mail
at Jean_Ostrem@next.com.

__
Next Article NeXTanswer #1991 Writing Device Drivers in an Object-Oriented
World    
Table of contents    http://www.next.com/HotNews/Journal/OSJ/SpringContents95.html

